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Abstract
We show that the Fano operator for a quantum system confined to a line R is
uniquely determined by assuming reasonable behaviour under translation and
parity transformation on phase space. In contrast, for a system on a lattice the
same procedure does not work.

PACS number: 03.65.−w

1. Introduction

The expectation values for a mixed state with the density matrix ρ̂ are expressed as the averages
over phase-space quasiprobability distribution W(q, p) defined by

W(q, p) = 1

2πh̄

∫ ∞

−∞
dr

[
e−ipr/h̄

〈
q +

r

2
, Q̂

∣∣∣∣ ρ̂
∣∣∣∣q − r

2
, Q̂

〉]
(1)

which is well known as the Wigner function (Wigner 1932), where
∣∣q ± r

2 , Q̂
〉

is the
eigenfunction with eigenvalue q ± r

2 for the coordinate operator. We can check that this
function satisfies the following conditions:

(A) We can obtain the marginal distribution along the coordinate and the momentum axes,∫ ∞

−∞
W(q, p) dp = 〈q, Q̂|ρ̂|q, Q̂〉∫ ∞

−∞
W(q, p) dq = 〈p, P̂ |ρ̂|p, P̂ 〉.

(B) The Wigner function is a real-valued function,

W ∗(q, p) = W(q, p).

(C) The Wigner function includes the same information as the density matrix.
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Here, |q, Q̂〉 and |p, P̂ 〉 are eigenfunctions for the coordinate operator Q̂ and the momentum
operator P̂ , respectively,

Q̂|q, Q̂〉 = q|q, Q̂〉 P̂ |p, P̂ 〉 = p|p, P̂ 〉.
Conversely, it has been pointed out that these conditions do not determine the Wigner

function uniquely (for example, Krügert and Poffyn 1976, Wigner 1979, O’Connel and Wigner
1981, Tatarskii 1983, Takami et al 2001). For this reason, Bertrand and Bertrand (1987)
and Leonhardt (1997) impose an additional condition which gives the connection between
rotations of quantum variables (Q̂, P̂ ) and of the point (q, p) in phase space on which the
Wigner function is defined,

〈q, Q̂|Rθ ρ̂R−1
θ |q, Q̂〉 =

∫ ∞

∞
W(q cos θ + p sin θ,−q sin θ + p sin θ) dp

where Rθ is the unitary operator for rotation of quantum variables (Q̂, P̂ ),

RθQ̂R−1
θ = Q̂ cos θ − P̂ sin θ Rθ P̂R−1

θ = P̂ cos θ + Q̂ sin θ.

And they show that there is only one solution satisfying it for a quantum system confined to
a line R. This condition makes it possible for us not only to determine the Wigner function
uniquely, but also to infer it from the quantity

〈
q, Q̂|Rθ ρ̂R−1

θ |q, Q̂
〉

obtained by observation
(Leonhardt 1996).

In the previous paper (Horibe et al 2002), we rewrote this condition using the Fano
operator �̂(q, p) (Fano 1957) defined by

W(q, p) = Tr[�̂(q, p)ρ̂] (2)

ρ̂ = 1

2πh̄

∫ ∞

∞
W(q, p)�̂†(q, p) dq dp. (3)

Namely, we assumed that

Rθ�̂(q, p)R−1
θ = �̂(q cos θ + p sin θ,−q sin θ + p sin θ) (4)

and showed that there is only one solution satisfying this condition. For the lattice ‘phase
space’ with N2 sites, we could discuss it in the same manner and found the unique solution,
which is equivalent to that given by Cohendet et al (1988), for the case where N is odd, but no
solution for the case where N is even. In the strict sense, the lattice space with N2 sites may
not be a phase space. However we used and will use the word ‘phase space’ for this space
in this paper since, for the system whose Hilbert space is the N-dimensional one, this space
corresponds to the phase space of the usual dynamical system.

Naively, we are interested in whether the Wigner function is determined uniquely under
the assumption of properties of simpler transformation than rotation. In this paper, we assume
the behaviour of the Fano operator �̂(q, p) in equation (2) under the translation and parity
transformation and try to determine the Fano operator. For a quantum system confined to a
line R, we can find only one Fano operator which satisfies the conditions corresponding to
the above ones (A)–(C) and new conditions. But, for systems on a lattice ‘phase space’, we
cannot determine it uniquely.

2. The Wigner function for a one-dimensional system

In this section, we study the Fano operator �̂(q, p) defined by equations (2) and (3). We shall
give a derivation that is not the shortest, but which we shall modify in section 3. In terms of
the Fano operator, we can rewrite conditions (A)–(C) in the preceding section,
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−∞
�̂(q, p) dp = |q, Q̂〉〈q, Q̂| (5)

∫ ∞

−∞
�̂(q, p) dq = |p, P̂ 〉〈p, P̂ | (6)

�̂†(q, p) = �̂(q, p) (7)∫ ∞

−∞

∫ ∞

−∞
(�̂†)q1q2(q, p)(�̂)q3q4(q, p) dp dq = 1

2πh̄
δ(q1 − q4)δ(q3 − q2) (8)

where |q, Q̂〉 and |p, P̂ 〉 are eigenfunctions of the coordinate operator Q̂ and the momentum
operator P̂ with eigenvalues q and p, respectively, as stated previously and �q1q2(q, p) =
〈q1, Q̂|�̂(q, p)|q2, Q̂〉 is a matrix element of the Fano operator between eigenfunctions of the
operator Q̂ for eigenvalues q1 and q2. When we expand the Fano operator in terms of the
complete set eiQP̂ /h̄ e−iPQ̂/h̄,

�̂(q, p) = 1

2πh̄

∫ ∞

−∞
dQ dP a(q, p;Q,P) eiQP̂ /h̄ e−iPQ̂/h̄ (9)

the coefficients a(q, p;Q,P) should satisfy the conditions∫ ∞

−∞
a(q, p;Q,P) dp = δ(Q) eiqP/h̄

∫ ∞

−∞
a(q, p;Q,P) dq = δ(P) e−ipQ/h̄

a∗(q, p;Q,P) = e−iQP/h̄a(q, p;Q,P)∫ ∞

∞
a∗(q, p : Q,P)a(q, p : Q′,P ′) dq dp = δ(Q − Q′)δ(P − P ′)

because of conditions (5)–(8). Using the Fourier transformed coefficients ã(s, t;Q,P)

ã(s, t;Q,P) = 1

2πh̄

∫ ∞

−∞
a(q, p;Q,P) e−i(qs−pt)/h̄ dq dp (10)

these conditions can be described in simpler forms;

ã(s, 0;Q,P) = δ(Q)δ(P − s) (11)

ã(0, t;Q,P) = δ(Q − t)δ(P) (12)

ã(s, t;Q,P)∗ = ã(−s,−t;−Q,−P) e−iQP/h̄ (13)∫ ∞

−∞
ds dt ã(s, t;Q′,P ′)∗ã(s, t;Q,P) = δ(Q − Q′)δ(P − P ′). (14)

2.1. New conditions arising from translation and parity transformation

For the classical theory, the distribution function ρ(q, p) on phase space is transformed in the
following way in a Galilean system;

ρ ′(q ′, p′) = ρ(q, p) = ρ(q ′ − a, p′ − b)

under the translation on phase space,

q → q ′ = q + a p → p′ = p + b.
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And under the parity transformation on phase space

q → q ′ = −q p → p′ = −p

the distribution function is changed into ρ ′(q ′, p′)

ρ ′(q ′, p′) = ρ(q, p) = ρ(−q ′,−p′).

Thus, in the quantum theory, we hope that the Fano operator is transformed as follows:

Ucont(a, b)�̂(q, p)U−1
cont(a, b) = �̂(q − a, p − b) (15)

and

Tcont�̂(q, p)T −1
cont = �̂(−q,−p). (16)

Here, Ucont(a, b) and Tcont are the unitary operators which are defined by

Ucont(a, b) = exp

[
i
P̂ a − Q̂b

h̄

]
(17)

Tcont = exp

[
−iπ

Q̂2 + P̂ 2

2h̄

]
. (18)

It is easily shown that these unitary operators Ucont(a, b) and Tcont induce the translation and
parity transformations, respectively,

Ucont(a, b)Q̂U−1
cont(a, b) = Q̂ + a Ucont(a, b)P̂U−1

cont(a, b) = P̂ + b (19)

TcontQ̂T −1
cont = −Q̂ TcontP̂ T −1

cont = −P̂ . (20)

For the coefficients in the expansion (9), these conditions (15) and (16) become

a(q, p;Q,P) eiQb/h̄ e−iaP/h̄ = a(q − a, p − b;Q,P) (21)

a(q, p;−Q,−P) = a(−q,−p;QP). (22)

Using the Fourier transformed coefficients ã(s, t;Q,P), these conditions are given by

ã(s, t;Q,P) = e−i(Q−t)b/h̄ eia(P−s)/h̄ã(s, t;Q,P) (23)

ã(s, t;−Q,−P) = ã(−s,−t;Q,P). (24)

Thus, we have simple equations from assumptions (15) and (16). In the next subsection we
try to find the Fano operator satisfying conditions (11)–(14), (23) and (24).

2.2. The Fano operator under the new conditions

From equation (23), we have

ã(s, t;Q,P) = F(s, t)δ(Q − t)δ(P − s) (25)

where F(s, t) is a function of s and t which is determined by other conditions.
Taking account of the condition (24), we obtain the condition for the function F(s, t),

F(s, t) = F(−s,−t). (26)

From conditions (26) and (13), the function F(s, t) should satisfy

F ∗(s, t) = e−its/h̄F (−s,−t) = e−its/h̄F (s, t)
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so that we get

F(s, t) = R(s, t) eist/2h̄

where R(s, t) is a real function of s and t. The value of the square of this function R(s, t) is
restricted to unity by the condition (14)

R2(s, t) = 1 or R(s, t) = ±1.

Because of the condition (11), we should choose +1 as R(s, t) and we have unique solution

ã(s, t;Q,P) = e−iQP/h̄δ(Q − t)δ(P − s).

Here we assumed that the function R(s, t) is continuous.

3. The Wigner function on lattice ‘phase space’

In this section, we try to determine the Fano operator by a similar method to the one we
adopted in the preceding section. For lattice ‘phase space’ with N2 sites, we can obtain the
conditions corresponding to the conditions (A)–(C) by replacing the integration by summation
over ZN in equations (11)–(14),∑

p∈ZN

�̂(q, p) = |q, Q̂〉〈q, Q̂| (27)

∑
q∈ZN

�̂(q, p) = |p, P̂ 〉〈p, P̂ | (28)

�̂†(q, p) = �̂(q, p) (29)∑
q,p∈ZN

(�̂†)q1q2(q, p)(�̂)q3q4(q, p) = 1

N
δ(N)
q1q4

δ(N)
q3q2

(30)

where |q, Q̂〉 and |p, P̂ 〉 are eigenvectors of the ‘coordinate’ and ‘momentum’ operators with
eigenvalues q (q ∈ ZN) and p (p ∈ ZN), respectively and δ(N)

q1q2
is Kronecker’s delta on ZN ,

δ(N)
q1q2

=
{

1 (q1 mod N = q2)

0 (q1 mod N �= q2)
.

We decompose the Fano operator �̂(q, p) into matrices SnP m(n,m = 0, 1, 2, . . . , N−1),

�̂(q, p) =
∑

n,m∈ZN

a(q, p; n,m)SnP m (31)

where the matrices S and P are defined by

S =




0 1 · · · 0
...

. . .
. . .

...

...
. . . 1

1 0


 (32)

P =




1 0 · · · · · · 0

0
. . .

...

... ωn
...

...
. . . 0

0 0 ω(N−1)




(33)
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and ω is a primitive Nth root of unity,

ω = e
2π i
N .

These matrices satisfy commutation relation

SnP m = ωnmP mSn (n,m = integer). (34)

This commutation relation appears similar to the commutation relation between operators
e−iPQ̂/h̄ and eiQP̂ /h̄ used in the preceding section

eiQP̂ /h̄ e−iPQ̂/h̄ = e−iPQ/h̄ e−iPQ̂/h̄ eiQP̂ /h̄

and we can think that matrices P and S correspond to e−iQ̂/h̄ and eiP̂ /h̄, respectively. It is
natural that the eigenvectors |q, Q̂〉 and |p, P̂ 〉 are regarded as eigenvectors with respect to the
matrices P and S, respectively:

P |q, Q̂〉 = ωq |q, Q̂〉 (35)

S|p, P̂ 〉 = ω−p|p, P̂ 〉 (36)

where the eigenvector |p, P̂ 〉 is expressed as a linear combination of the eigenvectors |q, Q̂〉
by the discrete Fourier transform,

|p, P̂ 〉 = 1√
N

∑
q∈ZN

ω−pq |q, Q̂〉.

We will use this correspondence of P and S to e−iQ̂/h̄ and eiP̂ /h̄ in order to define the translation
and parity transformation in lattice ‘phase space’.

Using the coefficients a(q, p; n,m), conditions (27)–(30) become∑
p∈ZN

a(q, p; n,m) = 1

N
ω−qmδn,0 (37)

∑
q∈ZN

a(q, p; n,m) = 1

N
ωpnδm,0 (38)

a(q, p; n,m) = ω−nma(q, p : N − n,N − m) (39)∑
q,p∈ZN

a(q, p; n,m)a(q, p; k, l) = 1

N2
δ

(N)
m,kδ

(N)
n,l . (40)

In order to obtain equation (40), we used the relation

δ
(N)
a,a′δ

(N)
b,b′ = 1

N2

∑
n,m∈ZN

(SnP m)ab(S
nP −m)a′b′ .

We introduce the Fourier transformed coefficients ã(s, t; n,m)

ã(s, t; n,m) = 1

N2

∑
q,p∈ZN

ωqsω−pta(q, p; n,m). (41)

The above conditions (37)–(40) become

ã(s, 0; n,m) = 1

N2
δ

(N)
n,0 δ(N)

m,s (42)

ã(0, t; n,m) = 1

N2
δ

(N)
n,t δ

(N)
m,0 (43)

ã(s, t; n,m) = ω−nmã∗(−s,−t;−n,−m) (44)∑
s,t∈ZN

ã(s, t; n,m)∗ã(s, t; k, l) = 1

N4
δ

(N)
n,k δ

(N)
m,l . (45)
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3.1. New conditions arising from translation and parity transformation

As we explained in the preceding subsection, since we consider that the matrices P and S as
e−iQ̂/h̄ and eiP̂ /h̄, from the definition (17) of Ucont(a, b), the unitary matrices Udis(a, b) for the
translation in lattice ‘phase space’ are obtained,

Ucont(a, b) = exp

[
i
P̂ a − Q̂b

h̄

]
→ Udis(a, b) = P bSa (46)

where we remove the factor exp
[−i ab

2h̄

]
which appears when the operator Ucont(a, b) is divided

into two operators;

exp

[
i
P̂ a − Q̂b

h̄

]
= exp

[
−i

ab

2h̄

]
exp

[
−i

bQ̂

h̄

]
exp

[
i
aP̂

h̄

]

since this factor is not a function defined on ZN × ZN and it does not influence the following
result to remove this factor. From commutation relation (34), we obtain{

P → P ′ = Udis(a, b)PU−1
dis (a, b) = ωaP

S → S ′ = Udis(a, b)SU−1
dis (a, b) = ω−bS

. (47)

This transformation is similar to the transformation of e−iQ̂/h̄ and eiP̂ /h̄ by unitary operator
Ucont(a, b).

Imitating equation (15), we assume that the Fano operator satisfies

Udis(a, b)�̂(q, p)U−1
dis (a, b) = �(q − a, p − b). (48)

Similarly, for the parity transformation, we assume as follows

Tdis�̂(q, p)T −1
dis = �̂(−q,−p) (49)

where Tdis is the unitary matrix for the parity transformation, which is given by

Tdis =




1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
...

...
...

0 0 1 · · · 0 0
0 1 0 · · · 0 0




or (T )α,β = δ
(N)
α,N−β. (50)

It is checked that this unitary matrix Tdis transforms matrices P and S into inverse matrices
P −1 and S−1, respectively,{

P → P ′ = TdisPT −1
dis = P −1

S → S ′ = TdisST −1
dis = S−1 . (51)

For the coefficients a(q, p; n,m) in the expansion (31), these conditions (48) and (49)
become

a(q, p; n,m) = ω−ma+nba(q − a, p − b; n,m)

a(q, p; n,m) = a(−q,−p;−n,−m)

and the coefficients ã(s, t; n,m) in equation (41) satisfy

ã(s, t; n,m) = ωa(s−m)ω−b(t−n)ã(s, t; n,m) (52)

ã(s, t; n,m) = ã(−s,−t;−n,−m). (53)
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3.2. The Fano operator under the new conditions

In order that the coefficients ã(s, t; n,m) satisfy the condition (52) for arbitrary integers a and
b, ã(s, t; n,m) should be proportional to δ

(N)
t,n δ(N)

s,m ,

ã(s, t; n,m) = F(s, t)δ
(N)
t,n δ(N)

s,m (54)

where F(s, t) is a complex valued function. And, from the condition (53), the function F(s, t)

should be a symmetric function under the reflection s → −s, t → −t

F (−s,−t) = F(s, t). (55)

Condition (44) with the above equation determines the phase factor up to sign,

F(s, t) = ω−st/2R(s, t) (56)

where R(s, t) is a real function. Substituting this equation (56) into the condition (45), we can
see that

R(s, t)2 = 1.

Thus, we obtain the same condition as we did for a one-dimensional quantum system in the
preceding section. In that case, we could determine the R(s, t) since we assumed that it is a
continuous function. However, we have many ways of assigning ±1 to each site on a lattice
‘phase space’. For example, in the case where N is odd, if we choose

R(s, t) = (−1)st = ωNst/2

we get the Fano operator which is given by Cohendet et al (1988).

4. Summary and discussion

We tried to determine the Fano operator uniquely under the assumptions for translation and
parity transformation. For a quantum system confined to a line R, we found only one Fano
operator satisfying these conditions and three original conditions. In contrast to this case, for
a lattice ‘phase space’ which includes N2 sites, we could not determine the Fano operator
uniquely.

We considered the map from a point on phase space to the point rotated about the
original point (q, p) = (0, 0) by π as the parity transformation. However, there are quantum
systems where we had better consider the rotation about another point, instead of the origin,
as the parity transformation. For example, in spin systems, the parity transformation is
corresponding to exchanging between eigenstates for eigenvalues ωk and ωN−1−k of matrix S.
This transformation is equivalent to the rotation about the point

(
N−1

2 , N−1
2

)
. The rotation

Tcont(c, d) and Tdis(c, d) about the point (c/2, d/2) by π for the phase space for the system
confined to a line R and discrete ‘phase space’ can be described in terms of combination of
translation and the rotation about the origin;

(q, p)
U−1( c

2 , d
2 )−→

(
q − c

2
, p − d

2

)
T−→

(
c

2
− q,

d

2
− p

)
U( c

2 , d
2 )−→ (c − q, d − p) (57)

and we have

T (c, d) = U(c, d)T . (58)

Hereafter, the subscripts ‘cont’ and ‘dis’ are dropped, as we have the same equations for both
cases. From equation (58), we can expect that the assumptions for this transformation do
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not give rise to essentially different conditions from the ones we considered in the preceding
sections. Indeed, if we assume the behaviour

T (c, d)�̂(q, p)T −1(c, d) = �̂(c − q, d − p) (59)

we have

ã(s, t;Q,P) = e−id(Q−t)/h̄ eic(P−s)/h̄ã(−s,−t;Q,P) (60)

ã(s, t; n,m) = ωc(s−m)ω−d(t−n)ã(−s,−t; n,m). (61)

Owing to the delta functions or Kronecker’s delta in equations (25) and (54), the factors
e−id(Q−t)/h̄ eic(P−s)/h̄ and ωc(s−m)ω−d(t−n) vanish, so that these conditions reduce to the ones
(24) and (53) we considered.
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